Density Functional Theory Investigation of The Physical Properties of Dicyano Pyridazine Molecules

نویسندگان

  • Fouad N. Ajeel
  • Alaa M. Khudhair
چکیده

Quantum calculations of the physical properties (electronic and vibrational), based on density functional theory (DFT) method at B3LYP/6-31G** level of theory, were performed, by means of the Gaussian 09 set of programs, to investigate the effect of the addition of the radical CN on pyridazine molecules. The best geometry, the total energy, frontier molecular orbital energies (HOMO and HUMO), energy gap, ionization potential, electron affinity, electronegativity, chemical hardness, chemical softness, electrophilicity, dipole moment and the harmonic vibration frequencies were calculated and discussed for the study molecules. The electronic properties are computed by two different methods, a finite difference approximation and Koopman’s theorem. The study clearly shows that adding the radicals CN cause decreased the energy gap and the chemical hardness, and increase the electrophilicity. Therefore, the presence of these radicals improves the conductivities and enhances the solubility and reactivity. All the results indicate that the molecule 2,4-(CH) 4N2 (CN) 2 is the best option for n-type organic semiconductors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reactivity and aromaticity of hexasiline derivatives Si6XH5 (X = H, F, Cl, Br, COOH, NO2, NH2, CH3 and tBu)

During recent years, the silicon organic-inorganic compounds play the key role in medicinal chemistry and pharmaceutical industry. This is because of their similar chemical properties with carbon compounds. The second reason is related to their easy transfer from the cell membranes. So, molecular simulation and study the properties of novel organosilicon compounds can be more important. From th...

متن کامل

A quantum-mechanical investigation of functional group effect on 5,5'-disubstituted-1,1'-azobis(tetrazoles)

The present work reports the detailed B3LYP/6-311++G(d,p) study of most stable transand cisconfigurations photoisomerization in the core system of computational photochemistry-the 5,5'-disubstituted-1,1'-azobis (tetrazole) molecules. All computations were carried out in gas phase attemperature 293.15 K and pressure 1 atm. Firstly; the potential energy surface (PES) of the groundstate of the mol...

متن کامل

NH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations

Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...

متن کامل

Theoretical Investigation of Interaction between 5-Fluorouracil Anticancer Drug with Various Nitrosamine Compounds

We present detailed theoretical studies of the H-bonded complexes formed from interaction between 5-fluorouracil and various six-membered cyclic nitrosamine compounds. In this study, an investigation on intermolecular interactions in X-NU (X = CH2, SiH2,BH, AlH, NH, PH, O and S) complexes is carried out using density functional theory. The calculations are conducted on B3L...

متن کامل

NH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations

Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015